

TCC 2018 (Goa)

Game Theoretic Notions of Fairness in Multi-Party Coin Toss

Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi

Nov 13, 2018

Who Gets to TCC in Goa?

- Soft merge of A and B
- Only one gets to present

Strong Fairness of Coin Toss

Definition of Maximin Fairness

Maximin Fairness of 3-Party, Unanimous

Maximin Fairness of 3-Party, Fail-Stop

abort early, otherwise honest

Q: Weak fairness?

Yes:

- 1. B sample bit *b*, sends *b* to A, C
- 2. A, C output b if received, output 1 if not received;B output b

Maximin Fairness of 3-Party, Malicious?

abort early & tamper random tape

Proof of Impossibility

Impossible even comp-bounded adversary

No harm to honest payoff

Proof roadmap:

- 1. [Lone-wolf] Single corrupt A (or C)
- 2. [Lone-minion] Single corrupt B
- 3. [Wolf-minion] Corrupt A+B (or C+B)

Proof of Impossibility

Impossible even comp-bounded adversary

No harm to honest payoff

Proof roadmap:

- 1. [Lone-wolf] Single corrupt A (or C)
- 2. [Lone-minion] Single corrupt B
- 3. [Wolf-minion] <u>Corrupt A+B</u> (or C+B)

Cleve's Attackers

Lone-Wolf Condition

Claim: Single-corrupt lone-wolf A (or C) cannot make any bias E[b] = 0.5

Proof. By <u>fairness</u>, cannot harm honest B and C.

> No harm to honest payoff

Lone-Minion Condition

Claim:

Almost all random tapes T_B of B are <u>equal</u>

Proof.

- If not, then some T_B bias toward 1 by <u>fairness</u>
- But, average over all T_B is 0.5
- Then, exists some T_B bias toward 0 not <u>fair</u> to A and C

No harm to honest payoff

Protocol Π

 $E[b \mid T_B] = 0.5$

Almost all T_B

Let such T_B be <u>Good</u>

Wolf-Minion Attackers

"Benign" Adv toward 1

 \mathcal{Adv} (some round *i*):

Party B: always follow Π , Unif. Rand. T_B Party A:

- 1. Follow Π until round i
- 2. Given transcript τ_i , Π -outcome α_i
- 3. $\alpha_i = 1$, abort after *i*-th msg;
 - $\alpha_i \neq 1$, abort (no *i*-th msg)

	Adv	(some round <i>i</i>):	
	Party	B: always follow Π , Unif. Rand. T_B	
	Party	A:	
1. Follow Π until round i			
2. Given transcript $ au_i$, Π -outcome $lpha_i$			
	3. α	$\alpha_i = 1$, abort (no <i>i</i> -th msg)	
		$z_i \neq 1$, abort after <i>i</i> -th msg	

Summary of Maximin Fairness, $n \geq 3$

Strong-Nash-Equilibrium (SNE) Fairness

Fairness Notions of Coin Toss

Maximin

Impossible (except for simple cases)

Group Maximin

Total loss/gain of honest/corrupt Coalition-Strategy-Proof (CSP)

Strong Nash Equilibrium (SNE)

All are equivalent in 2-party (Blum)

Fair protocol against malicious adv.

More Settings/Problems

- More game-theoretic notions (e.g. self-enforcing)
- **Private preference**, non-public abort, adaptive adversary
- Gap between upper & lower bounds
- Payoff functions (e.g. zero-sum)
- Other functionalities:
 - Finite random variable
 - Functions imply coin toss
 - ...
- Composition of functionalities

Thank you!

Private Preference

