TCC 2018 （Goa）

Game Theoretic Notions of Fairness in Multi－Party Coin Toss

Kai－Min Chung，Yue Guo，Wei－Kai Lin，Rafael Pass，and Elaine Shi Nov 13， 2018

Cornell University

CORNELL
TECH
HOME OF THE JACOBS TECHNION－CORNELL INSTITUTE

Who Gets to TCC in Goa?

- Soft merge of A and B
- Only one gets to present

$$
\text { Payoff } \begin{array}{lll}
b=0 & 0 \\
b=1 & 1
\end{array}
$$

$$
1
$$

Strong Fairness of Coin Toss

Expected output of honest $=0.5$
Corrupt majority, aborts early
[Cleve'86] Any n-party, $n \geq 2$, Impossible even adversary is comp-bounded and fail-stop

Preference

fail-stop:
 aborts early,
 otherwise honest

$$
\begin{array}{llll}
\text { Payoff } & b=0 & 0 & 1 \\
b=1 & 1 & 0
\end{array}
$$

Blum's Coin Toss

Intuition: no harm

to honest

Expected payoff of honest $\geq \mathbf{0 . 5}$

[Blum'81]
2-party protocol from crypto commitments

Preference

$$
\text { Payoff } \begin{aligned}
& b=0 \\
& b=1
\end{aligned}
$$

Commit b_{A}, send b_{B}, Open b_{A}, XOR $\left(b_{A}, b_{B}\right)$

$$
0
$$

Definition of 3-Party Weak Fairness?

Definition of Maximin Fairness

Maximin Fairness of 3-Party, Unanimous

Maximin Fairness of 3-Party, Fail-Stop

Maximin Fairness of 3-Party, Malicious?

abort early \& tamper random tape

Proof of Impossibility

Impossible even comp-bounded adversary

No harm to honest payoff

Proof roadmap:

1. [Lone-wolf] Single corrupt A (or C)
2. [Lone-minion] Single corrupt B
3. [Wolf-minion] Corrupt $\mathrm{A}+\mathrm{B}$ (or $\mathrm{C}+\mathrm{B}$)

Public
Preference

Payoff

1
0
1
0
1

Proof of Impossibility

Impossible even comp-bounded adversary

No harm to honest payoff

Proof roadmap:

1. [Lone-wolf] Single corrupt A (or C)
2. [Lone-minion] Single corrupt B
3. [Wolf-minion] Corrupt $\mathrm{A}+\mathrm{B}$ (or $\mathrm{C}+\mathrm{B}$)

Public
Preference

Payoff	$b=0$	0	1	0
	$b=1$	1	0	1

Lone-Wolf Condition

Claim:

$$
E[b]=0.5
$$

Single-corrupt lone-wolf A (or C) cannot make any bias

Proof.
By fairness, cannot harm honest B and C .

Lone-Minion Condition

Claim:

Almost all random tapes T_{B} of B are equal

Proof.

- If not, then some T_{B} bias toward 1 by fairness
- But, average over all T_{B} is 0.5
- Then, exists some T_{B} bias toward 0 not fair to A and C

No harm to honest payoff

Cleve Attackers, Fixed Equal T_{B}

$4 R$ attackers
 R: \# of rounds

Cleve attacker \mathcal{A}_{i}^{b} (round i, outcome b): 1 Party B: always follow Π, T_{B} honestly
Party A:

1. Follow Π until round i
2. Given transcript τ_{i}, Π-outcome α_{i}
3. $\alpha_{i}=b$, abort after i-th msg;
$\alpha_{i} \neq b$, abort (no i-th msg)
[Cleve'86]:
Average bias of attackers $\left(\mathcal{A}_{i}^{b}, \mathcal{C}_{i}^{b}\right)$ is $\Omega\left(\frac{1}{4 R}\right)$

Cleve attacker \mathcal{C}_{i}^{b} (round i, outcome b):
Party B: always follow Π, T_{B} honestly Party C:

1. Follow Π until round i
2. Given transcript τ_{i}, Π-outcome β_{i}
3. $\beta_{i}=b$, abort after i-th msg;
$\beta_{i} \neq b$, abort (no i-th msg)

Cleve Attackers, Fixed Good T_{B}

$4 R$ attackers
$R: \#$ of rounds

[Cleve'86]:
Average bias of attackers $\left(\mathcal{A}_{i}^{b}, \mathcal{C}_{i}^{b}\right)$ is $\Omega\left(\frac{1}{4 R}\right) \quad \Rightarrow$ Exist $\mathcal{A} d \mathcal{v}_{T_{B}} \in\left(\mathcal{A}_{i}^{1}, \mathcal{C}_{i}^{1}\right)$ toward 1

Almost all T_{B}

Let such T_{B} be Good

Cleve Attackers,
 Uniform Rand

$4 R$ attackers
 R : \# of rounds

Weak fair (no harm to 1) \Rightarrow For each $\underline{\text { Good }} T_{B}$, Exist $\mathcal{A} d v_{T_{B}} \in\left(\mathcal{A}_{i}^{1}, \mathcal{C}_{i}^{1}\right)$ toward 1

$\mathcal{A d v}$ (some round i):

Party B: always follow Π Unif. Rand. T_{B}
Party A:

1. Follow Π until round i
2. Given transcript τ_{i}, Π-outcome α_{i}
3. $\alpha_{i}=1$, abort after i-th msg;

Averaging over all T_{B}
 \Rightarrow Exist $\mathcal{A} d v$ toward 1

$\alpha_{i} \neq 1$, abort (no i-th msg)
"Benign"

Wolf-Minion Attackers

Protocol Π

"Benign" $\mathcal{A d} d v$ toward 1

$\mathcal{A d v}$ (some round i):
Party B: always follow Π, Unif. Rand. T_{B} Party A:

1. Follow Π until round i
2. Given transcript τ_{i}, Π-outcome α_{i}
3. $\alpha_{i}=1$, abort after i-th msg ;
$\alpha_{i} \neq 1$, abort (no i-th msg)

$\overline{\mathcal{A d v}}$ (some round i):

Party B: always follow Π, Unif. Rand. T_{B}
Party A:

1. Follow Π until round i
2. Given transcript τ_{i}, П-outcome α_{i}
3. $\alpha_{i}=1$, abort (no i-th msg)
$\alpha_{i} \neq 1$, abort after i-th msg

Expected outcome:

$E[\mathcal{A} d v]+E[\mathcal{A d v}]$
$\quad=0.5$
+0.5 (by lone-wolf condition)
$\Rightarrow \overline{\mathcal{A d v}}$ toward 0

Summary of Maximin Fairness, $n \geq 3$

Fail-Stop Malicious

Unanimous
Preference (1, 1, 1, ...)
Almost Unanimous
Preference (0, 1, 1, ...)
Yes
Impossible reduce to 3-party

Other
Preference ($0,0,1, \ldots$)

Impossible
reduce to 2-party [Cleve'86]

Strong-Nash-Equilibrium (SNE) Fairness

Public-identifiable
abort

Maximin:

No harm to honest payoff

SNE:

No adversary increases every corrupt expected payoff significantly

No incentive to deviate

0

1
0

Feasibility of SNE Fairness

Public-identifiable abort

No adversary increases every corrupt expected payoff significantly

No incentive to deviate

Fairness Notions of Coin Toss

Maximin
Impossible (except for simple cases)

Group Maximin	Total loss/gain
Coalition-Strategy-Proof (CSP) of honest/corrupt	

Strong Nash Equilibrium (SNE)
Fair protocol against malicious adv.

All are equivalent in 2-party (Blum)

More Settings/Problems

- More game-theoretic notions (e.g. self-enforcing)
- Private preference, non-public abort, adaptive adversary
- Gap between upper \& lower bounds
- Payoff functions (e.g. zero-sum)
- Other functionalities:
- Finite random variable
- Functions imply coin toss
- Composition of functionalities

Thank you!

Private Preference

Preference	1	0
Payoff $\quad b=0$	0	1
	1	0

